Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability.
نویسندگان
چکیده
To determine the effect of an established mutation of the beta1 subunit of Na(+) channels on nerve excitability, studies were undertaken in patients diagnosed with generalized epilepsy with febrile seizures plus (GEFS+). Multiple nerve excitability measurements were used to investigate the membrane properties of sensory and motor axons in five patients (aged 18-55 years) who were currently experiencing no seizures and were not on anticonvulsants. There was no history of paraesthesiae, fasciculation or cramps to suggest hyperexcitability of peripheral nerve axons. The median nerve was stimulated at the wrist, and compound muscle action potentials (CMAPs) were recorded from abductor pollicis brevis and the antidromic compound sensory nerve action potential (CSAPs) from digit 2. Stimulus-response behaviour, strength-duration time constant, threshold electrotonus, current-threshold relationship and the recovery of excitability following a supramaximal conditioning stimulus were recorded using threshold tracking. Compared with normal controls (n = 29), the axons of patients were of higher threshold. CMAPs and CSAPs were relatively small, although individual values remained within the normal ranges. Refractoriness and relative refractory period (markers of transient Na(+) channel function) were significantly reduced in GEFS+ patients with established mutations in SCN1B (P < 0.05), and strength-duration time constants (dependent on persistent Na(+) conductances) were reduced. It is suggested that, in peripheral nerve axons, the mutation underlying GEFS+ reduces the number of functioning Na(+) channels at the node of Ranvier and that this rather than any change in gating of individual channels dominates axonal excitability in these patients.
منابع مشابه
Na+ Channel β Subunits: Overachievers of the Ion Channel Family
Voltage-gated Na(+) channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted prote...
متن کاملscn1bb, a zebrafish ortholog of SCN1B expressed in excitable and nonexcitable cells, affects motor neuron axon morphology and touch sensitivity.
Voltage-gated Na(+) channels initiate and propagate action potentials in excitable cells. Mammalian Na(+) channels are composed of one pore-forming alpha-subunit and two beta-subunits. SCN1B encodes the Na(+) channel beta1-subunit that modulates channel gating and voltage dependence, regulates channel cell surface expression, and functions as a cell adhesion molecule (CAM). We recently identifi...
متن کاملTECHNOLOGY REPORT Floxed Allele for Conditional Inactivation of the Voltage-Gated Sodium Channel b1 Subunit Scn1b
The voltage-gated sodium channel gene Scn1b encodes the auxiliary subunit b1, which is widely distributed in neurons and glia of the central and peripheral nervous systems, cardiac myocytes, skeletal muscle myocytes, and neuroendocrine cells. We showed previously that the Scn1b null mutation results in a complex and severe phenotype that includes retarded growth, seizures, ataxia, and death by ...
متن کاملSHORT COMMUNICATION Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man
Generalized epilepsy with febrile seizures-plus (GEFS) is a benign Mendelian syndrome characterized by childhood-onset febrile and afebrile seizures. Three point mutations within two voltage-gated sodium channel genes have been identi®ed so far: in GEFS type 1 a mutation in the b1-subunit gene SCN1B, and in GEFS type 2 two mutations within the neuronal a-subunit gene SCN1A. Functional expressio...
متن کاملIn vivo loss of slow potassium channel activity in individuals with benign familial neonatal epilepsy in remission.
Benign familial neonatal epilepsy is a neuronal channelopathy most commonly caused by mutations in KCNQ2, which encodes the K(v)7.2 subunit of the slow K(+) channel. K(v)7.2 is expressed in both central and peripheral nervous systems. Seizures occur in the neonatal period, often in clusters within the first few days of life, and usually remit by 12 months of age. The mechanism of involvement of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 128 Pt 8 شماره
صفحات -
تاریخ انتشار 2005